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УДК: 004.93 

Численное исследование обтекания аэродинамического 

профиля bell 540 на основе современных моделей 

турбулентности 

 
1Хамдамов М.М., 1Музаффаров С.А., 2Мамадалиев Х.А., 3Собиров А.М. 
 

1 Механики и сейсмостойкости сооружений им. М.Т. Уразбаева АН РУз, Ташкент, Узбекистан 
2Ташкентского университета информационных технологий имени Мухаммада ал-Хоразмий, Ташкент, Узбекистан 
3Андижанский государственный университет. Узбекистан, 170100. г. Андижан. ул. Университет.129. 
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Аннотация. В данной статье представлено исследование модели турбулентности в обтекании дозву-
ковым потоком профиля BELL 540 с углами атаки от 0 до 12 градусов. Для численной реализации уравнений 
турбулентности использовался метод конечных элементов, осуществленный с использованием пакета про-
грамм Comsol Multiphysics. Полученные результаты сравнивались с данными экспериментальных измерений и 
показали хорошее соответствие между ними, что подтверждает адекватность предложенной модели турбу-
лентности. Обсуждаются основные аспекты методики исследования, включая параметры моделирования и 
анализ полученных данных. Это исследование вносит вклад в понимание турбулентного обтекания профилей 
и может быть полезным для разработки более точных инженерных моделей. 

Ключевые  слова: уравнения Навье–Стокса; отрывное течение; модель k − ; Comsol Multiphysics; 

NACA.  
Аннотация: Ушбу мақола Белл 540 аэродинамик профили атрофида турли 0 дан 12 градусгача 

бурчакдаги субсоник оқимнинг турбулентлик моделини ўрганишни тақдим этади. Турбулентлик тенгламаларини 
сонли ечиш учун Comsol Multiphysics дастурий пакети ёрдамида амалга оширилган чекли элементлар усули 
қўлланилди. Олинган натижалар тажриба натижалари билан солиштирилди ва уларнинг ўзаро мост келиши 
аниқланди, бу таклиф қилинган турбулетлик модели ушбу масала учун мост келишини тасдиқлайди. Тадқиқот 
методологиясининг асосий жиҳатлари, жумладан, моделлаштириш параметрлари ва олинган маълумотларни 
таҳлил қилиш муҳокама қилинади. Ушбу тадқиқот ҳаво плёнкалари атрофидаги турбулент оқимни тушунишга 
ёрдам беради ва аниқроқ муҳандислик моделларини ишлаб чиқиш учун қўллаш мумкин.  

Калит сўзлар: Навье–Стокс тенгламалари; Ажратилган оқим; k −  модели; Comsol Multiphysics; 

NAСA. 

Abstract:  This article presents a study of the turbulence model in subsonic flow around a BELL 540 airfoil 
with angles of attack from 0 to 12 degrees. For the numerical implementation of the turbulence equations, the finite 
element method was used, implemented using the Comsol Multiphysics software package. The results obtained were 
compared with experimental measurement data and showed good agreement between them, which confirms the ade-
quacy of the proposed turbulence model. The main aspects of the research methodology are discussed, including 
modeling parameters and analysis of the data obtained. This study contributes to the understanding of turbulent flow 
around airfoils and may be useful for developing more accurate engineering models. 

Keywords: Navier–Stokes equations; separated flow; model k −  ; Comsol Multiphysics; NACA. 

 

I. Введение 

Турбулентные потоки представляют собой 

сложные явления в области аэродинамики и гид-

родинамики, которые возникают в результате 

нелинейных взаимодействий между частицами 

жидкости или газа. Эти взаимодействия порож-

дают хаотические и непредсказуемые движения, 

что делает турбулентность одним из наиболее 

сложных объектов изучения в физике потоков. 

Понимание турбулентных потоков имеет важное 

значение для различных инженерных областей. 

В аэродинамике, например, турбулентность 

влияет на аэродинамические характеристики са-

молетов и ветрогенераторов, а также на эффек-

тивность и безопасность их полетов. В гидроди-

намике, турбулентные потоки определяют пове-

дение воды в реках, океанах и трубопроводах, 

что важно для проектирования гидротехниче-

ских сооружений и систем водоснабжения. 

Кроме того, турбулентность играет ключевую 

роль в разработке и оптимизации различных ме-

ханизмов и машин, таких как турбомашины, 

насосы и вентиляторы. Исследование турбу-

лентных потоков является актуальной задачей 
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исследования в настоящее время, так как оно 

способствует разработке более точных и эффек-

тивных инженерных моделей. При этом, не-

смотря на значительные достижения в этой об-

ласти, многие аспекты турбулентных потоков 

остаются недостаточно изученными, что создает 

потребность в дальнейших исследованиях и раз-

работках. Таким образом, понимание турбулент-

ных потоков имеет фундаментальное значение 

для различных инженерных приложений и явля-

ется объектом активного исследования в настоя-

щее время.  

Аэродинамический профиль BELL 540 

представляет собой крыло, разработанное с це-

лью улучшения аэродинамических характери-

стик и повышения эффективности летательных 

аппаратов. Этот профиль используется в различ-

ных авиационных приложениях благодаря 

своим уникальным свойствам и высокой произ-

водительности. 

Аэродинамический профиль BELL 540 

также используется в дизайне лопастей ветроге-

нераторов благодаря своим превосходным аэро-

динамическим характеристикам. Вот основные 

моменты, которые стоит учитывать при исполь-

зовании этого профиля в контексте ветрогенера-

торов [7-12]. 

Основные характеристики. 

Профиль BELL 540 имеет сглаженные 

контуры с закругленной носовой частью и заост-

ренной задней кромкой, что способствует мини-

мизации аэродинамического сопротивления и 

улучшению производительности ветрогенера-

тора. 

Толщина профиля, составляющая от 12% 

до 18% хорды, оптимальна для создания подъем-

ной силы и снижения сопротивления. Верхняя и 

нижняя поверхности имеют кривизну для опти-

мального распределения давления и улучшения 

аэродинамических характеристик. 

Профиль BELL 540 разработан для мини-

мизации турбулентности, что важно для устой-

чивости работы ветрогенератора и уменьшения 

вибраций, которые могут негативно сказаться на 

сроке службы оборудования.  

В данном исследовании мы сосредото-

чимся на численном моделировании турбулент-

ного обтекания профиля BELL 540. Этот про-

филь широко используется в аэродинамических 

исследованиях благодаря своей простоте и хоро-

шей характеристике подъемной силы. Мы будем 

исследовать обтекание профиля при различных 

углах атаки, начиная от 0 до 12 градусов. Для 

численного моделирования мы используем па-

кет программ Comsol Multiphysics, который 

предоставляет широкие возможности для реше-

ния разнообразных задач механики сплошных 

сред, включая моделирование турбулентных по-

токов [15-18].  

Исследования аэродинамики являются 

важным компонентом разработки и оптимиза-

ции ветрогенераторов. BELL 540 является одним 

из наиболее распространенных аэродинамиче-

ских профилей. Эффективные методы, такие как 

вычислительная гидродинамика (CFD), могут 

быть использованы для изучения обтекания про-

филя и определения его аэродинамических ха-

рактеристик. 

Исследование с использованием CFD 

позволяет проводить виртуальные 

эксперименты, моделируя течение вокруг 

профиля в различных условиях. Для оценки 

аэродинамических параметров используются 

различные подходы, такие как модели k −  и 

k − , для решения уравнений Навье-Стокса и 

уравнений турбулентности. 

Основная цель этого исследования − про-

верить адекватность предложенной модели тур-

булентности путем сравнения полученных чис-

ленных данных с результатами эксперименталь-

ных измерений. Успешное сопоставление этих 

результатов подтвердит применимость нашей 

модели к реальным инженерным задачам и по-

высит уровень доверия к численным методам в 

аэродинамике. Далее в статье мы подробно опи-

шем методику исследования, представим полу-

ченные результаты и обсудим их значимость для 

практических приложений. 

Физическая и математическая поста-

новка задачи. 

Турбулентный профиль крыла BELL 540 

должен эксплуатироваться в практически не-

сжимаемых условиях. Число Рейнольдса на 

хорду Re = 5 миллионов. На рис. 1 показаны рас-

четная сетки и граничные условия [13-16].  
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a) 

 
b) 

Рис. 1. 2D Профиль BELL 540: 
a) вычислительная сетка b) граничные 

условия 

Математическая модель 

Для решения задачи анализа обтекания 

аэродинамического профиля BELL 540 исполь-

зовались осреднённые по Рейнольдсу уравнения 

Навье-Стокса (RANS). Эти уравнения лежат в 

основе математического описания динамики не-

сжимаемой жидкости и представляют собой си-

стему дифференциальных уравнений, которые 

моделируют изменения скорости и давления в 

жидкой среде во времени и пространстве. 

Уравнения Навье-Стокса в осреднённой 

форме учитывают турбулентные потоки и пред-

ставляют собой следующую систему уравнений: 

Уравнение сохранения массы (уравнение 

непрерывности), которое описывает закон со-

хранения массы внутри расчетной области [7-9]: 

0i

i

u

x


=


. 

Уравнение сохранения импульса, кото-

рое описывает изменение скорости жидкости 

под воздействием внешних и внутренних сил: 
21 iji i i

j

j i j i i

u u p u
u

t x x x x x






   
+ = − + +

     
, 

где iu  − компоненты среднего скоростного 

поля, p  − среднее давление, ν − кинематиче-

ская вязкость, ij  − компоненты тензора напря-

жений, ρ − плотность.  

Использование уравнений Навье-Стокса, 

осреднённых по Рейнольдсу, позволяет учесть 

турбулентные эффекты и их влияние на обтека-

ние аэродинамического профиля BELL 540. Эти 

уравнения решаются численными методами, 

например методом конечных элементов, с при-

менением специализированных программных 

пакетов, таких как COMSOL Multiphysics. Такой 

подход обеспечивает получение детальных дан-

ных о характеристиках потока и его воздействии 

на профиль. 

Исследование модели турбулентности 

k − для задач течения турбулентного потока в 

обтекании аэродинамического профиля BELL 

540 является целью этой статьи. Полученные 

численные данные сопоставляются с извест-

ными экспериментальными данными, доступ-

ными на веб-сайте NASA Turbulence Modeling 

Resource (TMR) [12]. 

Модели турбулентности. 

Модель k −  широко используется в 
инженерной практике благодаря своей 
относительной простоте и способности 
адекватно описывать различные типы 
турбулентных потоков, включая потоки вокруг 
аэродинамических профилей. Она подходит для 
аэродинамических расчетов, прогнозирования 
сил и моментов на профили, оценки 
коэффициентов подъемной силы и 
сопротивления. 

Когда цепочка уравнений для 

корреляций турбулентных величин обрывается 

на уравнения для корреляций первого порядка, 

очевидно, что модель турбулентности первого 

уровня замыкания k −  является наиболее 

эффективной. Массовая плотность 

турбулентной энергии k и скорость диссипации 

турбулентной энергии ε описываются системой 

двух нелинейных диффузионных уравнений.  

Применение k −  модели для 

определения профилей ветра, температуры и 

коэффициентов турбулентной диффузии в 

атмосферном пограничном слое различной 

стратификации можно рассматривать как 
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прецедент учета гравитационной 

(конвективной) турбулентности. Для этого 

варианта модели эмпирические константы 

несколько отличаются от устоявшегося варианта 

констант [5, 6], выбранного для описания 

сдвиговых течений. Кроме того, для описания 

профилей величин приземного атмосферного 

слоя в случае устойчивой и неустойчивой 

стратификации необходимо использовать 

множество различных эмпирических констант. 

Работа [5], посвященная использованию k −  

модели для расчета автомодельного 

гравитационного перемешивания двух 

несжимаемых жидкостей, предложила еще 

большее отличие эмпирических констант 

модели от устоявшегося набора. 

 На данный момент эта модель очень 

популярна и включена во многие пакеты 

вычислительной гидродинамики [10-18]. 

 

 Здесь использованы обозначения 

, , , 

, , , 

, , 

, , , 

, , 

, ,  , 

, , 

, ,  

Эмпирические константы  модели 

принимают стандартные значения: 

, , , .  

Метод решения 

Для стандартной модели турбулентности 

k −  использованы стандартные решатели 

COMSOL Multiphysics. 

Результаты и их обсуждение 

Изменение давления на стенке канала в 

зависимости от расстояния называется 

распределением коэффициента поверхностного 

давления [19-25]. 

2

0

.
0.5

p

p p
C

U
−

=  

Здесь р − давление в точке на 

поверхности профиля, P∞ − давление свободного 

потока, ρ − плотность свободного потока, U0 − 

скорость свободного потока. 

Ниже показаны сравнения полученных 

численных результатов с известными 

экспериментальными данными. На рис. 2 

показаны коэффициенты давления и результаты 

эксперимента для различных углов атаки 

поверхности профиля. 

Зависимость коэффициента давления Cp 

от угла атаки является важным инструментом 

для анализа и оптимизации аэродинамических 

профилей. Она позволяет оценивать 

эффективность профиля при различных 

условиях и использовать эту информацию для 

проектирования более эффективных 

аэродинамических форм. 
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α=10 

 
α=15 

Рис.2. Коэффициент давления, 

различающийся в зависимости от угла атаки 

поверхности профиля [13] 

 

Профиль BELL 540 характеризуется 

высокой подъемной силой при различных углах 

атаки, что делает его эффективным в широком 

диапазоне условий полета. Влияние углов атаки 

на коэффициенты подъемной силы показано на 

рис. 3. 

 

 

Рис.3. Влияние углов атаки на коэффициенты 

подъемной силы [13] 

 

 

Результаты эксперимента сходны с 

результатами k −  модели, как показано на рис. 

2-3.  

На рис. 4 представлены изолинии 

скорости потока разных углов атаки: 

 
α= 2 

 
α= 4 

 
α= 6 

 
α= 8 

 
α= 12 
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Рис.4. Изолинии скорости потока разных 

углов атаки 

 

Анализ изолиний скорости потока 

вокруг аэродинамического профиля при разных 

углах атаки помогает понять, как изменяется 

распределение скорости и где возникают зоны 

высоких или низких скоростей. Это важно для 

оценки эффективности профиля и выявления 

областей возможного отрыва потока. 

Угол атаки α= 0: 

При нулевом угле атаки поток 

симметричен относительно профиля. Изолинии 

скорости будут равномерно распределены, без 

значительных изменений скорости на верхней и 

нижней поверхностях профиля. 

Угол атаки α= 4: 

С увеличением угла атаки, скорость на 

верхней поверхности профиля увеличивается, а 

на нижней поверхности уменьшается. Изолинии 

скорости будут сгущаться ближе к верхней 

поверхности профиля. 

Угол атаки α= 8: 

Дальнейшее увеличение угла атаки 

приведет к более значительным изменениям 

скорости. Образуются области высокой 

скорости на верхней поверхности профиля и 

низкой скорости на нижней поверхности. 

Угол атаки α= 12: 

При высоких углах атаки могут 

возникнуть турбулентные области и отрыв 

потока от поверхности профиля. Изолинии 

скорости будут показывать резкие изменения, 

особенно на верхней поверхности. 

Модель турбулентности k −  считается 

самим лучшей полу эмпирической моделью на 

сегодняшний день. 

 
α=2 

 
α=4 

 
α=8 

 
α=12 

Рис. 5. Изолинии поле давление разных 

углов атаки 

 

Построение изолиний поля давления при 

разных углах атаки является важной частью 

аэродинамического анализа, так как позволяет 

визуализировать распределение давления вокруг 

аэродинамического профиля и оценить его 

характеристики. 

Угол атаки α=0: 

При нулевом угле атаки поток 

симметричен относительно профиля. Изолинии 

давления будут равномерно распределены, без 

значительных изменений давления на верхней и 

нижней поверхностях профиля. 

Угол атаки α=4: 

С увеличением угла атаки, давление на 

нижней поверхности профиля увеличивается, а 

на верхней поверхности уменьшается. Изолинии 
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давления будут сгущаться ближе к носовой 

части профиля. 

Угол атаки α=8: 

Дальнейшее увеличение угла атаки 

приведет к более значительным изменениям 

давления. Образуются области низкого давления 

на верхней поверхности профиля, и высокое 

давление на нижней поверхности. 

Угол атаки α=12: 

При высоких углах атаки могут 

возникнуть турбулентные области и отрыв 

потока от поверхности профиля. Изолинии 

давления будут показывать резкие изменения, 

особенно на верхней поверхности. 

Построение изолиний поля давления при 

разных углах атаки позволяет визуализировать и 

анализировать аэродинамические 

характеристики профиля BELL 540. Эти данные 

могут быть использованы для оптимизации 

формы профиля и улучшения его 

аэродинамических свойств. 

ЗАКЛЮЧЕНИЕ 

Исследование обтекания 

аэродинамического профиля BELL 540 с 

использованием методов CFD дает инженерам и 

дизайнерам полезные данные. Эти данные могут 

быть использованы для того, чтобы повысить 

аэродинамическую эффективность, 

оптимизировать форму профиля и создавать 

более эффективные ветрогенераторы и 

летательные аппараты. Понимание 

аэродинамических характеристик профиля на 

уровне численного моделирования помогает в 

разработке инновационных технологий, 

направленных на разработку возобновляемых 

источников энергии для промышленности.  

Профиль обладает низким 

аэродинамическим сопротивлением, что 

способствует экономии топлива и повышению 

скорости летательных аппаратов. Профиль 

разработан для минимизации турбулентности, 

что улучшает устойчивость и управляемость 

летательного аппарата. 

Аэродинамический профиль BELL 540 

представляет собой высокоэффективное 

решение для дизайна лопастей ветрогенераторов. 

Его геометрические и аэродинамические 

свойства обеспечивают высокую подъемную 

силу, низкое сопротивление и отличное 

аэродинамическое качество, что делает его 

идеальным выбором для современных 

ветрогенераторов. 

В рассмотренной статье показана 

результаты стандартного модели 

турбулентности k −  в пакете программ 

Comsol Multiphysics, где используется метод 

конечных элементов. Для валидации модели 

k −  рассмотрены задачи обтекания 

аэродинамического профиля BELL 540. Из 

полученных результатов видно, что k −  

модель имеет высокую точность для этой задачи.  
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